

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 5 May 2023, pp: 203-208 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0505203208 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 203

Studyof Refactored Code Cloneon Software

Product Line Maintain ability

Prof. Rauki Yadav
Assistant Professor, Mahavir Swami College of Engineering and Technology,Vesu,Surat.

--- ---------

Date of Submission: 01-05-2023 Date of Acceptance: 08-05-2023

--- ----------

ABSTRACT: In order to reduce the cost of

quality assessment in later phases of the

development cycle, and to reduce the complexity of

products over time, its early assessment is

advocated. Early assessment technique comprises

of studying the product and identifying code clones

in them, removing the clones, a process called

Refactoring, and identifying factors influencing

various quality attributes. The current research

focuses on the identification of Code Clones in

SPL and effectively removing them by way of

Refactoring. After the codes have been refactored,

a correlation is established between the

Maintainability and its sub-characteristics and a

few metrics. Hence, the research objective was

fulfilled of designing a prediction model to assess

the impact of Refactored Codes on Maintainability.

KEYWORDS:Software Clone, Code Clone,

Duplicated Code Detection, Clone Detection

I. INTRODUCTION
This paper focuses on defining research on

associations between the cloning of code and

maintaining quality software components as the

main element of cloning code.

In the programming sector, numerous

copying and usage operations take place in separate

parts of the software which makes little or no

modification. As a software clone, the process of

replicating code is recorded and normal software

cloning is used in this method. In instances where

the maintenance of programming is catastrophic,

clones may be changed or withdrawn.

The characteristics and relations of Code

Clones with the SPL maintenance components

were not investigated in this type of study. The

research focuses on defining associations between

the cloning of code and maintaining quality

software components as the main element of

cloning of code.

Step. 1: Pre-processing: This is starting phase in

which entire inappropriate source code like

whitespace and comments will be discarded.

Production of source units: residual code will be

separated in the dissimilar set of disjoint fragments

identified as source components.

 Step. 2: Transform: In this phase, source units got

in past advance are changed over into selected

middle structure which can be provided

contribution to correlation algorithm. There is want

of this progression in every one of methods aside

from content-based strategy. It tends to be

accomplished either utilizing standardization or

extraction. Extraction is additionally subdivided

into3 subcategories agreed underneath:

Tokenization: Gathered source units as of past

advance are changed over in tokens utilizing a few

techniques or lexical conventions subsequent to

eliminating remarks, deletes and so forth. Tokens

are additionally organized into groupings. Parsing:

Abstract Syntax Tree (AST) is produced by

examining whole source code. AST is additionally

partitioned into sub trees (Koschke et al., 2006).

Those sub trees are thought-about to clone

identification. Control & data flow analysis: A

program Dependency Graph (PDG) graph is made

with certain instruments in which control & data

dependency is symbolized by edges & explanations

by hubs. PDG sub graphs are thought-about to

clone recognition.

Step. 3: Match Detection: In this progression, an

appropriate match is created in contrasting yield of

change stage, for example, changed units utilizing

correlation calculation. The clones are spoken to as

clone sets, family & classes. Addition trees &

hashing are a portion of examination methods that

can be utilized. In this phase, an appropriate match

is found by looking at the yield of change stage, for

example, changed units utilizing examination

calculation. The clones are spoken to as clone sets,

domestic& classes. The addition trees & hashing is

a portion of examination methods that can be

utilized.

Step. 4: Formatting: This stage is very unique in

relation to the last stage in this stage, clone sets of

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 5 May 2023, pp: 203-208 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0505203208 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 204

changed code are recorded to unique source code

utilizing document area.

Step. 5: Post-processing: Now this progression, the

programmed heuristic or physical investigation is

utilized to rank & sift through clones. Human

specialists are utilized to sift through false positives

via doing physical investigations. Heuristics

dependent on decent variety, span, recurrence &

different attributes of clones are utilized to

consequently sift through or rank clone hopefuls.

 Step. 6: Aggregation: It is the last advance of the

clone identification procedure which incorporates

legitimate information compression and

investigation. The clone family & classes are

shaped by joining distinguished clone sets..

Figure1.0:StepsforCloneDetection

II METHODOLOGY
After establishing the relationship between

Maintain ability and the effect of Code Clones,

using the proposed model, the next step will be to

remove those code clones using t h e Refactoring

technique (with the help of existing Refactoring

methods) which is a known technique for removing

code clones. And lastly, once the code has been

refactored, the impact of Maintainability and there

factored code will be assessed.

III. EXPERIMENTATION
ExperimentNumber ExperimentName The objectiveoftheExperiment

Experiment1 CodeCloneMetricsforSPLs Tostudythevariousmetricsrelatedtocodeclo

nesinSPLs

Experiment1.1 CodeClonemetrics

relatedtoFiles

Tostudy file-relatedmetrics

Experiment1.2 CodeClonesmetrics

relatedtocloneset

Studyingcloneset-relatedmetrics

Experiment1.3 CodeClonesrelatedto

linebasedmetrics

Tostudylinebasedmetrics

Experiment1–Code Clone Metrics for SPLs

The commencement of our experiments is

by making a detailed study of Software Product

Line methodology, Code Cloning problem in SPL,

identify the code clones in them and classifying

them. This was done with the help of Code clone

detection tool CCFinder. The graphs given in Fig

1.1 identifies clones based on Files, Clone set,

Lines and Syntax and provides the respective

metrics which is helpful in deriving correlation in

the later stages

Experiment 1.1 – Code Clone metrics related to

Files

The Fig 1.1 graphically depicts code clone

metrics based on Files. It pictorially depicts the

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 5 May 2023, pp: 203-208 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0505203208 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 205

file-based code clone metrics in each of the SPL

products taken for the experiment. From the graph,

it is indicated that clones are present across

different projects and within files of the same

project. It helps to suggest clone fragments in files.

It is observed that code similarity across the files

are lower than similarity within a file. Thus these

projects have clones within files.

Results- The graph classifies the clones according

to files with the help of File-based metric. This

helps in giving an idea of how clones are

distributed across files, according to file set and file

size.

Experiment 1.2 – Code Clone Metrics related to

Clone Set

The below given Fig 1.2 pictorially depicts code

clone metrics related to the clone set. The

experiment shows the various clone set metrics

spread across the projects for the experiments

undertaken.

Fig1.1Code Clone metrics based on Files

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 5 May 2023, pp: 203-208 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0505203208 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 206

Fig1.2Clone set related metrics

From the above graph, it is indicated that

the a graph gives a number of each of the identical

or similar fragments in each of the files of SPLs.

Code duplication considering token sequence,

clones in loop statements, can be easily identified

and also it indicates how presence of code clones in

loop statements and other condition statements

tends to increase the complexity of the overall

code.

Results- Graph 1.2 classifies the clones according

to Clone set-based metrics. This helps in giving an

idea of how clones are distributed across products

based on clone set metrics.

Observation: From the experiment conducted

above, it is observed that code clones exist based

on clone set which also includes decision and

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 5 May 2023, pp: 203-208 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0505203208 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 207

condition statements. On an average, there are less

number of LOOP statements and less conditional

statements.

Experiment1.3–Code clone metrics based on

Lines

The below given Fig 1.3 graphically depicts code

clone metrics based on Lines. It pictorially depicts

the Line based code clone metrics in each of the

SPL products taken for experiment.

From the above graph, it is indicated that the above

graph depicts the clone concentration across

products based on Line metrics. The total and

average of each metric for each product has been

calculated.

Results- Graph 1.3 classifies the clones according

to Line based metrics. This helps in giving an idea

of how clones are distributed across products based

on clone set metrics. The above graph gives line-

based clone values present in each of the selected

SPL files. The clones present in LOC, including

and excluding blank spaces, comments and the

likes are classified in the above table. Also, the

Total and average of each of the metric listed.

Fig 1.3 Line based metrics

IV. LIMITATION
This segment highlights the limitation of the

current scope of study and also the scope for

further research:

1)One drawback which could be stated is that the

other external quality parameters were not taken

into account.

2)In the current research, the limited number of

SPLs were considered. In future, the scope of the

investigation can be expanded and the outcomes

can be predicted to be significant. Based on the

variation of future experiments, the model can be

refined to predict a tightly-knit trend.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 5, Issue 5 May 2023, pp: 203-208 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0505203208 |Impact Factorvalue 6.18| ISO 9001: 2008 Certified Journal Page 208

3) More refactoring metrics can be formulated for a

better understanding of the overall system in the

long run.

V. CONCLUSION
Understanding the limited scope and

nature of our study, based on the experimental

analysis and results, and conclusions from the

experiments conducted in the research undertaken,

it was observed that SPL project suffers from code-

cloning. They surely contain clones and it becomes

important to remove them. Clones were distributed

across products based on files, clone set, lines and

syntax based metrics. It also included decision and

condition statements and on an average, there were

less number of LOOP statements and less

conditional statements. It was observed from the

experiments, that even in programs consisting of

simple statements, clones did appear and presence

of clones affected the overall program. It was also

observed that the sub-characteristic of

maintainability has various metrics and the values

in the files are classified according to the metrics of

Analyzability, Changeability, Testability, Stability

and Maintainability which helped us in

understanding which metric of which sub

characteristic was more

The code clone metrics after refactoring

has 70% of projects with lesser number of decision

points and the refactored codes consisted of simple

statements. The line-based metric values of

projects, before and after refactoring showed that

there is an overall decline in the values from the

average value of the refactored project. It was

observed that with the help of a new set of

refactoring metrics, syntactical refactoring could be

done and if for statements are used in a limited

measure, the code will result in being less

maintainable.

It was cumulatively observed that the for

statement was the most frequently used and

refactored. Maintainability values of the refactored

projects were recorded and it was observed that

changeability of the product was affected greatly.

The least of the maintainable product, after

refactoring, has been Integer Set and Union.

REFERENCES
[1]. Bosch J. and Bosch-Sijtsema P. M..

Introducing agile customer- centered

development in a legacy software product

line. Softw. Pract. Exper., 41(8):871–882,

July 2011. Doi: 10.1002/spe.1063.

[2]. Bellon S., Koschke R., Antoniol G., Krinke

J. and Merlo E. (2007). Comparison and

Evaluation of Clone Detection Tools. in

IEEE Transactions on Software Engineering,

vol. 33, no. 9, pp. 577-591. doi:

10.1109/TSE.2007.70725.

[3]. Chen L., Babar M. A. and Ali N. (2009).

Variability Management in Software Product

Lines: A Systematic Review. In Proceedings

of the 13th International Software Product

Line Conference. Pittsburgh, Pa, pp. 81-90.

[4]. Fenske W., Meinicke J., Schulze S., Schulze

S. and Saake G. (2017). Variant- Preserving

Refactorings for Migrating Cloned Products

to a Product Line. In International

Conference on Software Analysis, Evolution

and Reengineering. IEEE, pp. 316–326. doi:

10.1109/SANER.2017.7884632.

[5]. Jia Y., Binkley D., Harman M., Krinke J.

and Matsushita M. (2009). KClone: A

Proposed Approach to Fast Precise Code

Clone Detection. computer science. pp. 1-5.

JBoss Application Server.Retrieved

from:http://www.jboss.org.

[6]. Jia Y., Binkley D., Harman M., Krinke J.

and Matsushita M. (2009). KClone: A

Proposed Approach to Fast Precise Code

Clone Detection. computer science. pp. 1-5.

JBoss Application Server.Retrieved

from:http://www.jboss.org.

[7]. Kodhai. E, Perumal. A, and Kanmani. S.

(2010). Clone Detection using Textual and

Metric Analysis to figure out all Types of

Clones. in International Journal of Computer

Communication and Information System (

IJCCIS). Vol2. No1, pp. 99-103. ISSN:

0976–1349.

[8]. Koschke R., Falke R. and Frenzel P. (2006).

Clone detection using abstract syntax suffix

trees. WCRE'06. Working Conference on

reverse engineering IEEE(13): 253-262. doi:

10.1109/WCRE.2006.18.

[9]. Koschke R., Frenzel P., Breu A. P. J. and

Angstmann K. (2009). Extending the

Reflexion Method for Consolidating

Software Variants into Product Lines.

Software Quality Journal. Vol. 17, no. 4, pp.

331–366. DOI:

https://doi.org/10.1007/s11219-009-9077-8.

